Novel Approach for Grouping Social Data Based On Interest

S.Jackline¹, J.Ganesh², R.Krishnaveni Jeenath³

¹Department of Information Technology, Dr.Sivanthi Aditanar College Of Engineering, TAMILNADU
dafney sudha@gmail.com
²Department of Information Technology, Dr.Sivanthi Aditanar College Of Engineering, TAMILNADU
parthibanganesh@gmail.com
³Department of Information Technology, Dr.Sivanthi Aditanar College Of Engineering, TAMILNADU
rkjeenath@gmail.com

Abstract: Social web sites with large-scale websites like Facebook, Twitter, and LinkedIn have become a very important part of our daily life. A content-based categorization of the type of messages posted by Twitter users, based on which we examine users’ activity. Our analysis shows two common types of user behavior in terms of the content of the posted messages, and exposes differences between users in respect to these activities. Sites. We have therefore proposed a user-centered approach for integrating social data into groups of interests. This approach makes it possible to aggregate social data of the group’s members and extract from these data the information relevant to the group’s topic of interests. We find that people use microblogging to talk about their daily activities and to seek or share information.

Keywords: Collaboration, Groups of interest, Information sharing, Information organization, Information retrieval

I INTRODUCTION

During the past years, social web sites with large-scale websites like Facebook, Twitter, LinkedIn have become a very important part of our daily life. Hundreds of millions of users are highly connected to these websites for networking, communicating, publishing, and sharing with each other. An enormous amount of data, generally called social data including users’ conversation, personal updates, and shared information is increasingly generated by users. That makes social network sites powerful sources of information, news, and content of interest. The more the members contribute to the group, the more they can learn for themselves. Based on a user-centered approach for integrating social data into groups of interest. This approach allows users to aggregate parts of the aggregated data with their respective groups of interest. Users are also able to personalize their sharing settings and interests within their respective groups according to their own preferences. Both social network sites and groups of interests have played important roles in various areas. In regard to the information discovering and filtering process, they represent advantages and disadvantages as well. Social network sites provide a powerful multi domain source where recent information is constantly added. However, its numerous and heterogeneous natures often overwhelm users' limited cognitive processing capacity. Moreover, due to the imposed privacy rules, users are limited to their personal circles of social connections which mean that interesting information from outside the circles will be not shown to them. Groups of interests impose a group setting which makes sure that the members share only contents related to one or several particular topics at a single place. This makes it much easier to discover interesting information and useful contents. Nevertheless, the group commitment degree is different among members. Often, it is only a small number of members who actively generate contents, while the majority of members are passively consuming. A group may be therefore short of good contents if its active members are no longer active.

II RELATED WORK

Social network sites, also called social networking sites, are open web-based services whose main functionality is to connect people. Basically, they allow individuals to (1) construct a public or semi-public profile within a bounded system, (2) articulate a list of other users with whom they share a connection, and (3) view and traverse their list of connections and those made by others within the system. Social network sites have gradually experienced and rolled out new features to comply with users’ upcoming demands such as sending instant or private messages, posting statuses, sharing links, creating events, and so forth. There are a large number of social network sites available for users to choose. Among others, Facebook, Twitter, LinkedIn and Google+ are the most successful examples in terms of number of active users, traffic volume, and number of generated contents. Their coverage and focus are not identical. While Facebook and Google+ are two general-purpose networks, Twitter is devoted to micro-blogging activities, and LinkedIn is oriented to the professional community. As such, it is common that a single user is simultaneously connected to many of these social network sites to take advantage of different free services offered by each social network.
III USER’S AGGREGATED SOCIALDATA
A user's social data include data published by, or involving, or shared with the user in social network sites. They therefore comprise a wide range of information such as profile information, social connections, postings, interests, and so forth. These various data are different from one social network site to another with respect to their scope and their completeness. Based on a comparative study of social data available on Facebook, Twitter, LinkedIn, and Google+, have identified the five most frequent dimensions as follows:
1. The Profile Information dimension includes basic information about the user such as name, description, city, email, gender, and location;
2. The Friend dimension represents connections established between the user and others;
3. The Group dimension contains information about the groups in which the user is involved;
4. The Interest dimension lists the user’s interests;
5. The Post represents all contents shared by or shared with the user.

We have built an adapted model According to the model; a user can have several social account s from different social networks. Each social account contains a number of attributes identical to the Profile Information. It also includes a number of time stamped social activities taken in the same social network. There are at this time four types of Social Activity: (i) the social account posts a post, (ii) it receives a following post (i.e. a post posted by another social network member), (iii) it befriends with a social network member, and (iv) it adds an interest.

IV GROUP’S INTEREST AND SHARED CONTENTS
A group's shared information is made up of the information extracted from its members' social data which may contain sensible contents that the users do not want to reveal. It is therefore important to give the users a control over what they are ready to share with the group instead of systematically sharing all of their aggregated social data. Thus, the proposed model contains features for personalizing the membership dues. User and Group are linked through the association class called member which contains three specific attributes reflecting a member's sharing settings. These are (i) authorized accounts, (ii) authorized data, and (iii) review.

The first and second attributes allow a user to restrict the scope of the social data to share with a given group. For example As a member of the group, the user can freely choose which social accounts and which types of social data will be used to share with the group. The only rule is that the user has to open at least the Posts-type social data of one of his/her social accounts. As shown in the table, the user decided to share his Twitter and LinkedIn accounts. The third attribute called “review” is optional and complementary to the two first ones. If enabled, it will prevent any information detected relevant to the group from being immediately shared with the group, and makes it waiting for the user's verification. During the next visit of the group, the user therefore needs to review such information, thus deleting sensible information. This option can furthermore be used as a collaborative filter to filter out “false positive” information that automated filters missed. The objective of relevant information filtering module is to extract from the members' social data the information relevant to the groups' topics of interest. For that purpose, we have applied the information retrieval techniques which consider the members' social data as a collection of information resources and the groups' selectors as search queries.

V CONCLUSION
In this paper, introduced a user-centered approach for integrating social data into groups of interest. This approach enables a group of interest to extend the internal collaboration to social network sites, in particular large-scale social networks. More specially, it makes it possible to aggregate social data of the group's members and extract from these data the information relevant to the group's interests. The first model allows to represent the users and their social data aggregated from different social network sites. The second model allows to represent the groups of interest and their topics of interest and shared contents.. This system is basically composed of two main modules responsible for two particular tasks: (i) social data aggregation and (ii) relevant information filtering. The first task is straightforward. The second task is essentially done by information retrieval techniques.
REFERENCE


